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A new method to measure the thermal diffusivity of liquids is presented. It 
requires determination of the time dependence of the thermal expansion of the 
liquid when it is subjected to a heat source at the top of the cell containing the 
liquid. The high accuracy of the method (about 3%) is due to an essential 
reduction of convective currents and also to the absence of temperature 
detectors, which generally introduce unwanted perturbations on the thermal 
field. 
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I. I N T R O D U C T I O N  

The s t anda rd  me thod  to measure  the thermal  diffusivity of l iquids is the 
hot  wire method  [1 ] ,  in which the heat  source is a resistive wire, used at 
the same t ime as a t empera tu re  sensor. A p rope r  analysis  of the time 
behavior  of the t empera tu re  of the wire embedded  in the liquid can give 
ei ther the thermal  conduct iv i ty  or  the thermal  diffusivity of the l iquid itself. 
Very sophis t ica ted  exper imenta l  a r rangements  and da ta  analysis  p rog rams  
have been deve loped  to reduce the er ror  sources due to the finite size of the 
cell con ta in ing  the l iquid and to the convective currents  taking place dur ing  
the measurement  [ 2 - 5 ] .  

In the present  paper ,  we p ropose  a new method  which provides  an 
a l ternat ive  solut ion to the above  problems.  Such a method  is based on an 
or iginal  idea a l ready  used for solids: The  t empera tu re  field in the specimen 
is de te rmined  by measur ing  its thermal  expans ion  [ 6 - 8 ] .  Through  the 
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analysis of the sample dilation and of the temperature measured at the heat 
source, it is possible to obtain the thermal diffusivity. The high sensitivity 
of the detection apparatus and the elimination of unknown thermal losses 
provide measurements with an accuracy of about 3 % for low-conducting 
solid materials. 

The dilatometric technique turns out to be applicable to measurements 
on liquids by using the experimental apparatus shown in Fig. 1. The sample 
is contained in a cell (L) bounded by a Pyrex glass tube (G), by a copper 
disk (D), and by an lnvar support (1). A thermocouple (To) inserted in D 
records the temperature of the copper disk, which can be heated by the 
thermofoil heater (H). The temperature recorded by the thermocouple 
is the temperature of the whole disk, since owing to the high thermal 
diffusivity of copper, the thermal field can be considered uniform in D. 
The cell (L) is connected, through the two lnvar nozzles tA and B), to the 
liquid reservoir (R) and to the rotative pump tPI, respectively. One first 
evacuates the cell (A closed and B open} and then introduces the liquid 
(B closed and A openl. Finally, B is closed, and hereafter in this way any 
thermal expansion of the liquid in L is automatically transmitted to the 
mercury contained in the U tube. A nickel wire (C~) embedded in mercury 

C, I C2 

Fig. !. Experimental setup. The liquid is contained in the cell 
ILI bounded by the Pyrex tube IG), the copper disk ID). and 
the lnvar support Ill. To is the thermocouple recording the 
temperature of D heated by H. Nozzles A and B connect the 
cell to a reservoir IR) and a pump IPI. C1 and C, are the 
electrodes of the capacitive system. 
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allows an electrical connection with the electronic equipment (see below). 
At the other end, the U tube communicates with a fused silica capillary 
tube 0.050 cm in internal diameter and 0.5 cm in external diameter. The 
capillary is surrounded by a thin hollow cylinder of aluminum (C2), 
forming a cylindrical capacitor with the mercury of the capillary tube. Its 
capacitance can be detected by connecting the electric wire (C~) and the 
electrode (C2) to the electronic equipment composed by a GenRad bridge 
and a lock-in amplifier. When the thermofoil heater is working the fluid in 
L undergoes a thermal expansion, resulting in a rise in the mercury level 
in the capillary. This produces a change in capacitance, which is detected 
with a high sensitivity (1 part in 106) by the lock-in amplifier. 

The use of the mercury capillary tube as a mechanical amplifier of the 
liquid thermal dilation does not perturb the temperature field inside the cell 
and, for this reason, represents an ideal temperature detector provided that 
we are able to correlate the dilation to the field itself. This is certainly 
possible because, if the measurement time is short enough, the heat 
diffusing from D does not appreciably arrive at the lnvar support I, and 
consequently the problem essentially involves heat diffusion from a hot base 
into a long cylinder surrounded by an annular vessel of different material. 
The mathematical solution of this problem is discussed in Section 2. 

We impose boundary conditions of zero flux at both the upper and the 
lower base of the cylinder (due to the reasons explained above) and show 
that, for reasonable values of the Newton coefficient describing the heat 
exchange between the outer surface of the annular vessel and the environ- 
ment, the perturbation produced by this exchange on the thermal field 
inside the liquid can be rendered negligibly small by a proper choice of the 
vessel thickness. 

Finally, by the same apparatus we also avoid the problem of convec- 
tive currents, these being drastically reduced, because the thermal gradient 
inside the cell and the gravitational field are set in opposite directions. 

2. T H E O R Y  

We solve the diffusion equation for a system consisting of a homo- 
geneous cylinder of liquid having length l, surrounded by a vessel with 
known physical properties. The two media are in contact with the copper 
disk D in which, owing to the high thermal conductivity of copper, the 
temperature can be considered independent of the spatial coordinates and, 
consequently, a function of only one variable {time): Its time behavior is 
detected by the thermocouple To. 

Let k be the conductivity and p the product cp=(specific heat)x  
(density) for the liquid under study. We subdivide the whole time interval 
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into many  small intervals, in each of which the tempera ture  of the copper  
disk can be considered constant.  Let us indicate by Ti the tempera ture  of 
the copper  disk in the time interval between ti and ti+ ~ and by 01 + ~(?', t) 
the corresponding tempera ture  at any point ~" of the system (liquid + 
vessel), assuming the vessel to be described by the same values of It and k 
characterizing the liquid. 0'i + ~ is referred to as the unper turbed field; it 
obviously satisfies the diffusion equation-" 

- k V ' - O  + I t  ? t  = 0 ( 1 ) 

With reference to cylindrical coordinates  (r, - ,  ~b), the - axis being directed 
downward  with the origin at the upper  base of the cylinder, the solution of 
Eq . (1)  must satisfy the boundary  condit ion at the outer  surface of the 
vessel ( r =  R), namely, 

- k / ) ?  \ | - z  ( - )  =hO (2) 
\ c r l ~  

and the condit ion of zero heat flux at the lower base 

- k  //\|?[--) = 0  (3) 
\ c z / : = t  

This follows from the condit ion that, during the time of measurement ,  no 
appreciable heat arrives at z = / .  At the upper  base ( z = 0 )  the tempera ture  
of the liquid at any time is assumed to be the same as the tempera ture  of 
the copper  disk: In fact• the tempera ture  j u m p  through the contact  between 
a metal and a low-conduct ing medium is negligibly small, as experimen- 
tally shown by the authors  in previous works  [6, 7]. Consequent ly  our  
assumpt ion  is valid for all the dielectric liquids but would certainly fail for 
liquid metals. 

In terms of the diffusivity ~ = k / i t ,  the solution satisfying Eqs. (2) and 
(3) can be written in the form 

O ' i + l ( r . z , t )  T i . t + ~ ' .  ,i , .q;.,, = c ..... ~b,,,,, ~ (4) 
llnl 

where 

q~ ..... =s in( to .Z)Jo(v , , , r )  (5) 

q,-.,, = to;, + v. ,  (6) 

-" Definitions of symbols are given under Nomenclature. at the end of the text. 
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~o,, being fixed by the condition given by Eq. (3) as 

o ~ , , =  n +  7 I7)  

and v., by the condition given by Eq. (2), or 

kv, , ,Jl{v, , ,R) + hJo{v,,, R)  = 0 (8) 

By imposing time continuity 

O I ,(,', :, t , )=  0', + '(,', :, t,) (9) 

and using the orthogonality properties of the functions ~ ...... one easily 
obtains the following recurrence relation: 

,i .i , ( T i - T i +  ) (¢ ...... 1) e~, : ,  

for i >  I, where (~, ¢) means the scalar product 

R / 
(~, I//)= I. ,'dl'I(~)~dz, (11) 

The expression of c~,},,, is deduced from the condition of zero t emperature  at 
t = O, namely, 

(4' ...... I) 
c',l,,, = - T ,  (12) 

(4, ...... 4,,,,,,) 

Putting 

Oi + '(ti+ ,) = 0i÷ i (13) 

one easily deduces, from Eqs. (4), (10), and (12), the following general 
expression of the unperturbed temperature field: 

' I'~ ...... I )  , , ~ , # , , , : , , + ,  
O , = T , +  ~ (7". , - T ? )  z . . . .  q),,,,,e /" {14) 

, = ~  ..... t ¢  ...... ¢, , , , , )  

where r is the constant 

r = t i + j - t  i (15) 

Let us now try to solve the diffusion equation in the nonhomogeneous 
medium consisting of the central cylinder of liquid and of the surrounding 
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vessel. By proper choice of the material, the difference in diffusivity and 
conductivity between the liquid and the vessel can be greatly reduced and 
a perturbation theory correspondingly developed. The temperature field in 
the system (liquid + vessel) is now written 0(r, z, t ) +  O'(r , - ,  t), where 
O(r , z , t )  is the unperturbed solution given previously and O' is the 
perturbation. The diffusion equation to be solved is 

- (k + k')  V'-(0 + 0') + (~ + t~') - -  
o(o + o') 

- 0  (16) 
?t 

where k and p refer to the liquid and k '  and p '  are zero for r < a, where 
a is the inner radius of the vessel: c9nversely, for a < r < R  one has 
k ' =  k v -  k and i t ' =  F~v- ~, the index V referring to the vessel. We assume 
the contribution of the term 

80' 
k 'V'-O' + lt' ?---7 (17) 

to be negligible and solve the equation 

30'  , ? 0  
- k V'-O' - k '  V'-O + ~ - - ~  + ~ ~ t  = 0 (18)  

The solution of Eq. (18) in the time interval (ti, t~+ ~) is written in the form 

1 0 ' l :  ' ~,,,,,e (19) 
I | l t l  

Substituting Eqs. (4) and (19) into Eq. (18), we obtain the equation 

V-~k ..... + qT,,,, ~b I .... .' - = ~ ..... 2(r) q,,,,,~ ..... (20) 

where 

k'  It' t \~t  - !  =),o for a < r < R  

. . . . .  Io 
2(r) k l~ 

for r < a  

(21) 

having introduced the thermal diffusivity av = kv/ lav .  
The solution of Eq. (20) can be written as 

~bl .... ~ * A  i = + r,,,,,cb ..... (22) nlpI ,  II 'lp I ' ~ II "1~ I • i 

i I ' l t l "  

where the symbol * means that m ' =  m must be excluded from the sum. 
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Substituting Eq. (22) into Eq. (20) and taking the scalar product  of 
both sides of Eq. (22) by ¢,,,..,,,.., one obtains 

, _ c,,,,,qT,,,,(qJ,,..,,,.., 2(r) ~b,,, , ,) ci , , , ,q~, , ,6 , , , , . .2  ...... .. 

A ........ ' " ' -  (q~,, , ,-q~,. , , , , . ,)(qJ,, . . , , , . . ,  (o , , . . , , , . . ) -  (q~,,,,- q~,..,,,..)(~b,,..,,,.., ~b,,..,,,..) (23) 

where 

/J', ~ 
2 ...... . . = ~  2 ( r ) J o ( v , , r ) J o ( v , , , . . r } r & "  

i 

Using Eqs. (22) and (23), the per turbat ion field [Eq. (19)] can be rewritten 
a s  

i 3 - . 
~ .  c , , , , ,qT,, , ,6, , , , .z  ...... . . ,q~,,,, 

( ° ' ) : : + ' = ~  L , - , , - ~ - = - : - - - - - .  - ~ , , . , , , .e  
. . . . . . .  .,,,. ( q T , , , - q T , , , , ' ) ( ~ , , , , , ,  ~ , , , , , )  

+ ~ ri,,,,~b,,,,e "";,,' (24) 
t l l t l  

It is now possible to obtain the coefficients ~ "~,,,,, by imposing the time 
continuity of (0') I ~ and (0')i + t at t = t~. Using Eq. (11) for the coefficients 
c I ..... one can easily find the following recurrence relation: 

., r i t ~ * ( T i - T i + t )  
] t i m  - -  t t n l  ~ - -  

t #  m 

x ( 2 5 )  
(4,,.,,,., 4,,.,,,.) (qL, , . -  q,~,,,)(4 ...... 4,,,,,,t 

The coefficient t-°,.,, is determined by imposing zero temperature at t = 0. or 
q., ..... = 0 .  

r ° Tj 3-'* (~,,.,,,., 1 ) q~,.,,,. 6, , , .  2 ...... . = , . . .  . . . . . .  w - - - - - - x  ( 2 6 )  
..... ,,',,, (¢ ...... d,,m)(d,,.,,., q~,,.,,. ) (q;;.,,. - qT,,,) 

Solving the recurrence relation for r', .... and substituting the explicit 
i expression of the coefficients t'~,,,,, in Eq. (23) for A ........ .,,. provides the 

following expression for the perturbative term: 

i 3 . 
, _ ,~ ~ .  (qb,,,,,., 1) qT,,,,.z ...... • dk ..... 

O, = E (rp , r p )  ,,.,,,. ($,~,,,,~.,~,)((k,.,,,, o6,,,,,.)(q~.,,.-q~,,,,) 
p = l  

x {exp[-c tq~, , , . r ( i+  1 - p ) ] - e x p [ - ~ q ~ , , , , z ( i +  I - p ) ] }  (27) 

t l i +  I where we have put 0i+t = 0 i  (t~+t). 

S4 I~  2 - 3  
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The volume change of the liquid at time t~ is 

/ a 

to,(,.-I+o,(,.-II,.,,. (281 

where fl is its thermal expansion coefficient. Using Eqs. (14) and (27) and 
putting v , , ,R=x  .... one finally obtains 

. . . . .  4~IR "- ',L 
3 i = P r t a - t l , +  L (Tp , - T  e) 

1[ 
p = l  

x ~ ( n + ~ ) , a , , , e x p  - - - ~ K , , , , , ( i + l - - p )  
H m  

4fl/R22o i llll~lnl" ~,°ntft' 
+ - - E  ( r ,  , -  r~l y.7, E ,,;7~,,_ . - - -  . 

R I "  = I . ' , ,," ~ 2 ' XT, c - -  X T .  

x exp - -~_~,',,,,.(i+ I - p )  - e x p  - --~_~,,,,,(i+ I - p )  129) 

where 

( ..... = n + ~  ~ +x ; ,  

1 , o 50 ) Jo(-X,,, y) dy ~o 'R YJo(x,,, y) dv 
a,,, = 5o 1 yJ~(x,,, y) dy 

j'gR yJo(x,,, y )dy  J'~ .VJo(x,,..v) dy 1" 
. . . . .  ~ - - - -  :r- ~ - -  j,, vJo(x,,, v) Jo(x,,,. v) dv 
' ...... ' - J" o .~% (-~,,, y )  dy  J'o .~'Jo (.~,,,. Y) a y  , ,  

In our experimental apparatus, the temperature T~ and the expansion of 
the liquid are recorded simultaneously, through the signals given by the 
thermocouple To and by the capacitance cell, respectively. The capacitive 
signal is easily converted into a volume change through a simple calibra- 
tion procedure in which one observes, in a preliminary experiment, the 
change of the electric signal ,J V corresponding to an increase in the mer- 
cury level dd  from a lower to an upper mark in the capillary, as produced 
by the heating of the liquid. Since the capacitance is a linear function of the 
mercury height in the capillary, one can determine in this way the coef- 
ficient e = ,J V/Ad and hereafter deduce, for any small change of capacitance 
signal, 6 V, the corresponding volume change of the liquid, 6f2, through the 
relation 

6f2 = S  a v  (31) 
/3 
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where S is the area of the capillary cross section. In our apparatus, we had 
rid= 5 cm and the error in the calibration coefficient e. was of the order 
0.5%. 

After the calibration experiment, when the system has again reached 
thermal equilibrium, one can proceed to the measurement of the liquid 
thermal diffusivity. 

In Fig. 2 we show the temperature and the capacitance signal 
corresponding to the heating experiment on a sample of ethyl alcohol, 
performed in air at 15°C. 

Determining for each time ti, by a simple analysis of these curves, the 
experimental values of Ti and LJi, we impose a guess value of the diffusivity 
~=k/ / l  and calculate through Eq. (42) the square sum 

N 
i "~ ,5= ~ (Ll~xp-zl,,)- (32) 

i = l  

where N is the number of intervals of width r into which the total time 
interval has been subdivided, while d~x o and zJi, refer to the experimental 
and theoretical values of the volume change, respectively, at time ti. 

The value of the liquid diffusivity is determined by looking for the 
value of ~ producing the minimum 6. 

15 ~ I ~ I ~ I l I = I l I l I l 

,10 T v _ 

5 

0 
0 20 40 60 80 

t , $  

Fig .  2. V a n d  T a r e  the  s i g n a l s  c o m i n g  f r o m  the  

c a p a c i t i v e  s ~ s t e m  a n d  f r o m  the  t h e r m o c o u p l e  To ,  

r e spec t i ve ly .  N o t e  t h a t  the  u n i t s  o n  the  .r ax i s  a r e  

a r b i t r a r y .  T h e  a c t u a l  t e m p e r a t u r e  i n c r e a s e  in D is 

3.2 :C.  
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3. D I S C U S S I O N  A N D  C O N C L U S I O N S  

To discuss the effect of the heat exchange between the outer surface of 
the vessel and the environment,  as described by Newton 's  law [Eq.  (2)],  
we performed a computer  experiment, determining for a given vessel thick- 
ness the theoretical dilation of the liquid corresponding to a given value of 
the diffusivity (:~ = 0.0010 cm -~. s ~) and a given Newton coefficient (h = 10 
for solid in contact  with air: see Ref. 9, p. 5). At this point we treated the 
theoretical dilation as an experimental function, 'J'~xp, to be inserted into 
Eq. (32)+ and determined the value of :~ producing the minimum 6 under 
the assumption h = 0. The difference 6:~ between the value of :x determined 
in this way and the original value of :~ gives the error introduced by neglec- 
ting heat exchange with the environment.  In Table I we give the relative 
change 6~1~ corresponding to different thicknesses ( d =  R -  a) of the vessel+ 
taking a = 0 . 7  cm and / = 4  cm (as in our experimental setup). 

We deduce from Table l that for a thickness greater than 0.2 cm, the 
presence of heat exchange at the lateral wall of the cell produces an error 
lower than 1% in the value of the thermal diffusivity and, therefore, can be 
neglected. This conclusion holds afortiori if the cell operates in vacuum: In 
fact, the value used for h was pessimistically high, as referring to Pyrex 
glass in contact  with air: The heat exchange obviously can be reduced by 
putting the vessel in a vacuum chamber.  

Another  source of uncertainty coming from the cell wall is related to 
the dilation of the cell itself, which introduces an error in the measurement  
of the volume change of the liquid. This problem can be avoided if the cell 
wall is made of fused silica or low-expansion glass ceramic (Zerodur).  In 
our case, the cell was obtained from a Pyrex tube: Since the volume expan- 
sion coefficients of Pyrex and of the liquid (ethyl alcohol in our  case) are 
0 .93x 10 ~ and 1.01 x 10 s, respectively [111, we expect a correction of 
the order of 1% to be added to Eq. {29) for the volume change of the 
liquid. Since the correction is small, it can be evaluated by assuming the 

Table I. Values of 6:~/~ Obtained in the 
Computer Experiment Described in the Text 

(cm) ( % l 

0.05 2.0 
0.10 1.5 
0.20 1.0 
0.30 0.5 
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temperature field in the Pyrex wall depending only on - and t and solving 
the diffusion equation as in Ref. 6. The correction resulting in this way 
turns out to be less than 1.5%. 

To analyze the curves in Fig. 2 we used the values l~v/l~= 1.02 
and :~v=6 .23x10  3cm2.s  ~ deduced from the interpolation at 1 5 C  
of the specific heat data [10] and density data of ethyl alcohol [11] 
and from data on Pyrex glass as given by the Short Company (Shott 
Pyrex glass, k = l . 1 6 x l 0  3 J . c m  t . s  i. C i c = 0 . 8 4 J . g  I . : 'C J 
p = 2.23 g- cm 3). The value of the diffusivity of ethanol resulting from the 
minimization of Eq.(32J (including the correction due to the thermal 
expansion of the cell) was 1.13x10 3cm- ' . s  ~, in agreement with the 
value of 1.05 x I0 3 coming from thermal conductivity measurements [11 ]. 

Since we imposed the condition given by Eq. (3) on account of the fact 
that during the time of measurement A T no appreciable heat arrives at the 
base of the cell I lnvar support), we expect the final value of ~ to be inde- 
pendent of l, provided that this length is higher than a critical length lc, 
roughly representing the space covered by the heat front during d T. As the 
time required to go from - = 0  to - = /  is approximately l'-/rt'-~t [12], we 
have /c ~ r~ x/~ AT. For A T =  80 s, /~ turns out to be of the order of 1 cm, 
so that the use of our cell with / = 4 cm is widely justified. We repeated the 
minimization procedure for / =  5 cm and / =  6 cm and did not find signifi- 
cant differences in the final values of ~. A further point to be considered is 
the possible source of error coming from the calibration of the capacitive 
system. 

To evaluate this error we proceed in analogy with the discussion of the 
heat losses from the lateral surface of the vessel. In other words, we first 
assume ~z, h, tL and a, calculate the theoretical dilation of the liquid as a 
function of time, and alter each value of this function by a factor 1.005, 
corresponding to a supposed change of 0.5 % in the calibration parameter 
~:. Treating the resulting values as experimental dilations i (3~xp), we deter- 
mine the liquid diffusivity through the usual minimization of 6. In this way 
we see that the new value of :~ differs from the original one by about 0.7 %. 
From the above discussion we deduce that our dilatometric technique 
allows, in principle, measurements of the thermal diffusivity of liquids with 
an accuracy better than 1%. 

At this point, however, it is necessary to discuss the corresponding 
accuracy required for the parameters l~, I~v, and:c  We repeated the 
analysis of the curves in Fig. 2, first giving a change of 10% in the ratio 
l~v/l~ (that is, putting F~v/l~ = 1.122), and found through the minimization 
procedure c¢= 1.12 10 3cm-" .s 1. In the second step, we changed the value 
O f ~ v b y  10% and again found ~ = 1 . 1 2 1 0  3cm2.s  ~. Thus an uncertainty 
as high as 10% in our knowledge of pv/lt and ~,,, is still consistent with the 
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accuracy claimed for ~. This feature is a consequence of the fact that pv/,U 
and Ztv enter only the perturbative term of the solution (0'), which is small 
with respect to the unperturbed term 0. 

A final comment concerns the presence of convective currents inside 
the cell. As said previously, we resorted to an experimental arrangement in 
which the thermal gradient and the gravitational field are set in opposite 
directions. Such a device has bcen used to reduce convective currents in 
classical experiments concerning the measurement of thermal conductivity 
in fluids (flat plate method: see Ref. 13). Even if a full elimination of such 
currents is probably not obtained, we have arguments to assess that their 
effect is small. In fact, for a given data record pertaining to a total measure- 
ment time of 80 s, we applied our analysis to a shorter time interval (0, ti) 
extracted from the same record (t, = 40 s~ and deduced the corresponding 
value of the thermal diffusivity. The deviation of this value from the result 
referring to the total range is contained within 5 %. The essential point is, 
however, that if the analysis is applied to another data record of 80 s 
pertaining to an independent measurement, the deviation, though still 
contained within 5 %, is not systematically found to be of the same sign as 
in the previous measurements: Actually, the deviations corresponding to 
several records referring to the same time extension and the same tem- 
perature are found to be randomly scattered with positive or negative sign, 
Now convective currents arising as a consequence of the applied gradient 
should progressively increase with time during the experiment, and conse- 
quently their effect on the apparent value of zt corresponding to the total 
time interval should always be of the same sign with respect to the value 
corresponding to shorter time intervals. The absence of such a result in our 
measurements shows that the effect of the above currents is certainly small 
with respect to the intrinsic source of uncertainty in our measurements, 
which is essentially attributed to the instability connected with an imperfect 
thermostatation of the cell. This uncertainty masked the relevant accuracy 
predicted for the method and was estimated by comparing the values of the 
diffusivity deduced from all the records mentioned previously and referring 
to the same temperature conditions and the same time extension of the 
measurements (80sl: The resulting diffusivities were scattered with a 
spread of + 3 %  around the mean value as obtained from the analysis of 
10 independent experiments (including calibration procedures) performed 
on the same sample. The above value is therefore assumed as an indication 
of the present accuracy of the method: The fact that, for each record, the 
discrepancy between the value of ~ corresponding to 40 and to 80 s was 
found to be somewhat higher (+5% J reflects the uncertainty connected 
with insufficient information on the thermal behavior of the sample in the 
case of the data referring to the shorter time interval. Our  efforts are now 
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c o n c e n t r a t e d  o n  i m p o s i n g  the  t h e r m o s t a t a t i o n  of  the  cell so as to  e l i m i n a t e  

a n  e r r o r  w h i c h  is n o t  p e r t i n e n t  to  the  m e t h o d  a n d  r educes  its n o m i n a l  

accu racy .  

N O M E N C L A T U R E  

k T h e r m a l  c o n d u c t i v i t y  

c Specif ic  h e a t  

p D e n s i t y  

p cp  = specif ic  h e a t  x d e n s i t y  

It N e w t o n  coeff ic ient  

x T h e r m a l  d i f fus iv i ty  

T, 0 T e m p e r a t u r e  

• 1 1  E lec t r i c  s igna l  

~: C a l i b r a t i o n  coeff ic ient  

.I,Q, Aex p, /Jth V o l u m e  c h a n g e  o f t h e  l iqu id  
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